The Sleep-Immune Crosstalk in Health and Disease.

Physiological reviews. 2019;99(3):1325-1380
Full text from:

Plain language summary

The interaction between sleep and immunity is an established phenomena. This thorough review article summarises sleep changes in response to both infectious and non-infectious immune system challenges and describes the role of sleep in supporting the immune system. Details are provided of how sleep affects the innate immune system (first line, rapid defence against infection) as well as the adaptive immune system (second line, delayed defence against infection), using a feedback system which promotes host defence. Sleep is associated with reduced infection risk and can improve infection outcome and vaccination responses. Sleep deprivation is also associated with chronic, low-grade inflammation. Nutrition Practitioners wishing to support immunity can focus on sleep as a simple lifestyle measure to enhance resilience.

Abstract

Sleep and immunity are bidirectionally linked. Immune system activation alters sleep, and sleep in turn affects the innate and adaptive arm of our body's defense system. Stimulation of the immune system by microbial challenges triggers an inflammatory response, which, depending on its magnitude and time course, can induce an increase in sleep duration and intensity, but also a disruption of sleep. Enhancement of sleep during an infection is assumed to feedback to the immune system to promote host defense. Indeed, sleep affects various immune parameters, is associated with a reduced infection risk, and can improve infection outcome and vaccination responses. The induction of a hormonal constellation that supports immune functions is one likely mechanism underlying the immune-supporting effects of sleep. In the absence of an infectious challenge, sleep appears to promote inflammatory homeostasis through effects on several inflammatory mediators, such as cytokines. This notion is supported by findings that prolonged sleep deficiency (e.g., short sleep duration, sleep disturbance) can lead to chronic, systemic low-grade inflammation and is associated with various diseases that have an inflammatory component, like diabetes, atherosclerosis, and neurodegeneration. Here, we review available data on this regulatory sleep-immune crosstalk, point out methodological challenges, and suggest questions open for future research.

Lifestyle medicine

Fundamental Clinical Imbalances : Neurological ; Immune and inflammation
Patient Centred Factors : Mediators/Immunity/sleep
Environmental Inputs : Mind and spirit
Personal Lifestyle Factors : Sleep and relaxation
Functional Laboratory Testing : Not applicable

Methodological quality

Allocation concealment : Not applicable

Metadata